JP XVIII
(2021)

JP XVIII (2021)

Ryokeijutsukanto Extract

苓桂朮甘湯エキス

Ryokeijutsukanto Extract contains not less than 1 mg and not more than 4 mg of (E)-cinnamic acid, and not less than 17 mg and not more than 51 mg of glycyrrhizic acid ($C_{42}H_{62}O_{16}$: 822.93), per extract prepared with the amount specified in the Method of preparation.

Method of preparation

	1)	2)
Poria Sclerotium	6 g	6 g
Cinnamon Bark	4 g	4 g
Atractylodes Rhizome	3 g	_
Atractylodes Lancea Rhizome	_	3 g
Glycyrrhiza	2 g	2 g

Prepare a dry extract or viscous extract as directed under Extracts, according to the prescription 1) or 2), using the crude drugs shown above.

Description Ryokeijutsukanto Extract occurs as a brown powder or black-brown viscous extract. It has an odor, and a sweet first then bitter taste.

Identification (1) To 1.0 g of the dry extract (or 3.0 g of the viscous extract) add 10 mL of water, shake, then add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the solvent under low pressure (in vacuo), add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of (E)cinnamic acid for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thinlayer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane, ethyl acetate, formic acid and water (60:40:4:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-purple spot from the standard solution (Cinnamon Bark).

(2) For preparation prescribed Atractylodes Rhizome— To 1.0 g of the dry extract (or 3.0 g of the viscous extract) add 10 mL of water, shake, then add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the solvent under low pressure (in vacuo), add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of atractylenolide III for thin-layer chromatography in 2 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat the plate at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-white fluorescent spot from the standard solution (Atractylodes Rhizome).

(3) For preparation prescribed Atractylodes Lancea Rhizome—To 2.0 g of the dry extract (or 6.0 g of the viscous extract) add 10 mL of water, shake, then add 25 mL of hexane, and shake. Separate the hexane layer, evaporate the solvent under low pressure (in vacuo), add 2 mL of hexane to the residue, and use this solution as the sample solution. Perform the test with the sample solution as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane and acetone (7:1) to a distance of about 7

cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): a dark purple spot is observed at an Rf value of about 0.5. The spot shows a greenish brown color after being sprayed evenly 4-dimethylamino-benzaldehyde TS for spraying, heated at 105°C for 5 minutes, and allowed to cool (Atractylodes Lancea Rhizome).

(4) To 1.0 g of the dry extract (or 3.0 g of the viscous extract) add 10 mL of water, shake, then add 10 mL of 1butanol, and shake. Centrifuge, and use the 1-butanol layer as the sample solution. Separately, dissolve 1 mg of liquiritin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 1 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat the plate at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-green fluorescent spot from the standard solution (Glycyrrhiza).

Purity (1) Heavy metals $\langle 1.07 \rangle$ —Prepare the test solution with 1.0 g of dry extract (or an amount of the viscous extract, equivalent to 1.0 g of the dried substance) of Ryokeijutsukanto Extract as directed in the Extracts (4), and perform the test (not more than 30 ppm).

(2) Arsenic <1.11>—Prepare the test solution with 0.67 g of dry extract (or an amount of the viscous extract, equivalent to 0.67 g of the dried substance) of Ryokeijutsukanto Extract according to Method 3, and perform the test (not more than 3 ppm).

Loss on drying $\langle 2.41 \rangle$ The dry extract: Not more than 8.5% (1 g, 105°C, 5 hours).

The viscous extract: Not more than 66.7% (1 g 105°C, 5 hours).

Total ash $\langle 5.01 \rangle$ Not more than 8.0%, calculated on the dried basis.

Assay (1) (E)-Cinnamic acid—Conduct this procedure using light-resistant vessels. Weigh accurately about 0.5 g of dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance) of Ryokeijutsukanto Extract, add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of (E)cinnamic acid for assay, and dissolve in diluted methanol (1 in 2) to make exactly 100 mL. Pipet 10 mL of this solution, add diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of (E)-cinnamic acid in each solution.

Amount (mg) of (E)-cinnamic acid
=
$$M_S \times A_T/A_S \times 1/20$$

 M_S : Amount (mg) of (E)-cinnamic acid for assay taken, calculated on the basis of the content obtained by qNMR

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-

length: 273 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40 °C.

Mobile phase: A mixture of water, acetonitrile and phosphoric acid (750:250:1).

Flow rate: 1.0 mL per minute (the retention time of (*E*)-cinnamic acid is about 12 minutes).

System suitability—

System performance: When the procedure is run with $10 \mu L$ of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of (*E*)-cinnamic acid are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of (*E*)-cinnamic acid is not more than 1.5%.

- (2) Glycyrrhizic acid—Perform the test according to the following i) or ii).
- i) Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water $\langle 2.48 \rangle$ by coulometric titration, using 10 mg), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10\,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solution.

Amount (mg) of glycyrrhizic acid (
$$C_{42}H_{62}O_{16}$$
)
= $M_S \times A_T/A_S \times 1/2$

 M_S : Amount (mg) of Glycyrrhizic Acid RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40°C .

Mobile phase: Dissolve 3.85 g of ammonium acetate in 720 mL of water, and add 5 mL of acetic acid (100) and 280 mL of acetonitrile.

Flow rate: 1.0 mL per minute (the retention time of glycyrrhizic acid is about 15 minutes).

System suitability-

System performance: Dissolve 5 mg of monoammonium glycyrrhizinate for resolution check in 20 mL of dilute ethanol. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.9 to glycyrrhizic acid and the peak of glycyrrhizic acid is not less than 1.5. Dissolve 1 mg of (E)-cinnamaldehyde for thin-layer chromatography in 50 mL of methanol. To 2 mL of this solution add 2 mL of the standard solution. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peaks of glycyrrhizic acid and (E)-cinnamaldehyde is not less than

1.5.

System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glycyrrhizic acid is not more than 1.5%.

ii) Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add 20 mL of ethyl acetate and 10 mL of water, and shake for 10 minutes. After centrifugation, remove the ethyl acetate layer, add 20 mL of ethyl acetate, proceed in the same manner as described above, and remove the ethyl acetate layer. To the aqueous layer add 10 mL of methanol, shake for 30 minutes, centrifuge, and take the supernatant liquid. To the residue add 20 mL of diluted methanol (1 in 2), shake for 5 minutes, centrifuge, and take the supernatant liquid. Combine these supernatant liquids, add diluted methanol (1 in 2) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water <2.48> by coulometric titration, using 10 mg), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solu-

Amount (mg) of glycyrrhizic acid (
$$C_{42}H_{62}O_{16}$$
)
= $M_S \times A_T/A_S \times 1/2$

 M_S : Amount (mg) of Glycyrrhizic Acid RS taken, calculated on the anhydrous basis

Operating conditions—

Proceed as directed in the operating conditions in i). System suitability—

System repeatability: Proceed as directed in the system suitability in i).

System performance: Dissolve 5 mg of monoammonium glycyrrhizinate for resolution check in 20 mL of dilute ethanol. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.9 to glycyrrhizic acid and the peak of glycyrrhizic acid is not less than 1.5.

Containers and storage Containers—Tight containers.

